Variable coefficient third order Korteweg–de Vries type of equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIABLE COEFFICIENT THIRD ORDER KdV TYPE OF EQUATIONS

We show that the integrable subclassess of the equations q,t = f(x, t) q,3 + H(x, t, q, q,1) are the same as the integrable subclassess of the equations q,t = q,3 + F (q, q,1).

متن کامل

Exact solutions for the family of third order Korteweg de-Vries equations

In this work we apply an extended hyperbolic function method to solve the nonlinear family of third order Korteweg de-Vries (KdV) equations, namely, the KdV equation, the modified KdV (mKdV) equation, the potential KdV (pKdV) equation, the generalized KdV (gKdV) equation and gKdV with two power nonlinearities equation. New exact travelling wave solutions are obtained for the KdV, mKdV and pKdV ...

متن کامل

A numerical solution of variable order diusion and wave equations

In this work, we consider variable order difusion and wave equations. The derivative is describedin the Caputo sence of variable order. We use the Genocchi polynomials as basic functions andobtain operational matrices via these polynomials. These matrices and collocation method help usto convert variable order diusion and wave equations to an algebraic system. Some examples aregiven to show the...

متن کامل

Explicit exact solutions for variable coefficient Broer-Kaup equations

Based on symbolic manipulation program Maple and using Riccati equation mapping method several explicit exact solutions including kink, soliton-like, periodic and rational solutions are obtained for (2+1)-dimensional variable coefficient Broer-Kaup system in quite a straightforward manner. The known solutions of Riccati equation are used to construct new solutions for variable coefficient Broer...

متن کامل

Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg-de Vries equation

In the present work, utilizing the two-dimensional equations of an incompressible inviscid fluid and the reductive perturbation method, we studied the propagation of weakly nonlinear waves in water of variable depth. For the case of slowly varying depth, the evolution equation is obtained as a variable-coefficient Korteweg–de Vries (KdV) equation. A progressive wave type of solution, which sati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1995

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.530974